Спектральная мощность сигнала. Спектральная плотность мощности детерминированного сигнала. Соотношение между спектральной плотностью и ковариационной функцией случайного процесса

При исследовании автоматических систем управления удобно пользоваться еще одной характеристикой стационарного случайного процесса, называемой спектральной плотностью. Во многих случаях, особенно при изучении преобразования стационарных случайных процессов линейными системами управления, спектральная плотность оказывается более удобной характеристикой, чем корреляционная функция. Спектральная плотность случайного процесса определяется как преобразование Фурье корреляционной функцией , т. е.

Если воспользоваться формулой Эйлера то (9.52) можно представить как

Так как нечетная функция то в последнем выражении второй интеграл равен нулю. Учитывая, что четная функция получаем

Так как то из (9.53) следует, что

Таким образом, спектральная плотность является действительной и четной функцией частоты о). Поэтому на графике спектральная плотность всегда симметрична относительно оси ординат.

Если спектральная плотность известна, то по формуле обратного преобразования Фурье можно найти соответствующую ей корреляционную функцию:

Используя (9.55) и (9.38), можно установить важную зависимость между дисперсией и спектральной плотностью случайного процесса:

Термин «спектральная плотность» обязан своим происхождением теории электрических колебаний. Физический смысл спектральной плотности можно пояснить следующим образом.

Пусть - напряжение, приложенное к омическому сопротивлению 1 Ом, тогда средняя мощность рассеиваемая на этом сопротивлении за время равна

Если увеличивать интервал наблюдения до бесконечных пределов и воспользоваться (9.30), (9.38) и (9.55) при то можно формулу для средней мощности записать так:

Равенство (9.57) показывает, что средняя мощность сигнала может быть представлена в виде бесконечной суммы бесконечно малых слагаемых , которая распространяется на все частоты от 0 до

Каждое элементарное слагаемое этой суммы играет роль мощности, соответствующей бесконечно малому участку спектра, заключенному в пределах от до Каждая элементарная мощность - пропорциональна значению функции для данной частоты Следовательно, физический смысл спектральной плотности состоит в том, что она характеризует распределение мощности сигнала по частотному спектру.

Спектральная плотность может быть найдена экспериментально через среднюю величину квадрата амплитуды гармоник реализации случайного процесса. Приборы, применяемые для этой цели и состоящие анализатора спектра и вычислителя среднего значения квадрата амплитуды гармоник, называются спектрометрами. Экспериментально находить спектральную плотность сложнее, чем корреляционную функцию, поэтому на практике чаще всего спектральную плотность вычисляют но известной корреляционной функции с помощью формулы (9.52) или (9.53).

Взаимная спектральная плотность двух стационарных случайных процессов определяется как преобразование Фурье от взаимной корреляционной функции т. е.

По взаимной спектральной плотности можно, применяя к (9.58) обратное преобразование Фурье, найти выражение для взаимной корреляционной функции:

Взаимная спектральная плотность является мерой статистической связи между двумя стационарными случайными процессами: Если процессы некоррелированы и имеют равные нулю средние значения, то взаимная спектральная плотность равна нулю, т. е.

В отличие от спектральной плотности взаимная спектральная плотность не является четной функцией о и представляет собой не вещественную, а комплексную функцию.

рассмотрим некоторые свойства спектральных плотностей

1 Спектральная плотность чистого случайного процесса, или белого шума, постоянна во всем диапазоне частот (см. рис. 9.5, г):

Действительно, подставляя в (9.52) выражение (9.47) для корреляционной функции белого шума, получим

Постоянство спектральной плотности белого шума во всем бесконечном диапазоне частот, полученное в последнем выражении, означает, что энергия белого шума распределена по всему спектру равномерно, а суммарная энергия процесса равна бесконечности. Это указывает на физическую нереализуемость случайного процесса типа белого шума. Белый шум является математической идеализацией реального процесса. В действительности частотный спектр западает на очень высоких частотах (как показано пунктиром на рис. 9.5, г). Если, однако, эти частоты настолько велики, что при рассмотрении какого-либо конкретного устройства они не играют роли (ибо лежат вне полосы частот, пропускаемых этим устройством), то идеализация сигнала в виде белого шума упрощает рассмотрение и поэтому вполне целесообразна.

Происхождение термина «белый шум» объъясняется аналогией такого процесса с белым светом, имеющим одинаковые интенсивности всех компонент, и тем, что случайные процессы типа белого шума впервые были выделены при исследовании тепловых флуктуациоиных шумов в радиотехнических устройствах.

2. Спектральная плотность постоянного сигнала представляет собой -функцию, расположенную в начале координат (см. рис. 9.5, а), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.62), и иандем по (9.55) соответствующую ей корреляционную функцию. Так как

то при получаем

Это (в соответствии со свойством 5 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности, определяемой (9.62), является постоянным сигналом, равным

Тот факт, что спектральная плотность представляет собой -функцию при означает, что вся мощность постоянного сигнала сосредоточена на нулевой частоте, что и следовало ожидать.

3. Спектральная плотность периодического сигнала представляет собой две -функции, расположенные симметрично относительно начала кординат при (см. рис. 9.5, д), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.63), и найдем по (9.55) соответствующую ей корреляционную функцию:

Это (в соответствии со свойством 6 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности определяемой (9.63), является периодическим сиг налом, равным

Тот факт, что спектральная плотность представляет собой две -функции, расположенные при означает, что вся мощность периодического сигнала сосредоточена на двух частотах: Если рассматривать спектральную плотность только в области положительных частот, то получим,

что вся мощность периодического сигнала будет сосредоточена на одной частоте .

4. Спектральная плотность временной функции, разлагаемой в ряд Фурье имеет на основании изложенного выше вид

Этой спектральной плотности соответствует линейчатый спектр (рис. 9.9) с -функциями, расположенными на положительных и отрицательных частотах гармоник. На рис. 9.9 -функции условно изображены так, что их высоты показаны пропорциональными коэффициентам при единичной -функции, т. е. величинам и

Заметим, что спектральная плотность как это следует из (9.64), не содержит, так же как и корреляционная функция, определяемая (9.44), никаких сведений о фазовых сдвигах отдельных гармонических составляющих. и наоборот. Это соответствует физической сущности процесса: чем шире график спектральной плотности, т. е. чем более высокие частоты представлены в спектральной плотности, тем выше степень изменчивости случайного процесса и тем же графики корреляционной функции. Другими словами, связь между видом спектральной плотности и видом функции времени получается обратной по сравнению со связью между корреляционной функцией и видом функции времени. Это особенно ярко проявляется при рассмотрении постоянного сигнала и белого шума. В первом случае корреляционная функция имеет вид горизонтальной прямой, а спектральная плотность имеет вид -функции (см. рис. 9.5, а). Во втором случае (см. рис. 9.5, г) имеет место обратная картина.

6. Спектральная плотность случайного процесса, на кото рой наложены периодические составляющие, содержит непрерывную часть и отдельные -функции, соответствующие частотам периодических составляющих.

Отдельные пики на графике спектральной плотности указывают на то, что случайный процесс смешан со скрытыми периодическими составляющими, которые могут и не обнаруживаться при первом взгляде на отдельные записи процесса. Если, например, на случайный процесс наложен один периодический сигнал с частотой то график; сцектральной плотности имеет вид, показанный на рис. 9.10,

Иногда в рассмотрение вводят нормированную

спектральную плотность являющуюся изображением Фурье нормированной корреляционной функции (9.48):

Нормированная спектральная плотность имеет размерность времени.


Величина, характеризующая распределение энергии по спектру сигнала и называемая энергетической спектральной плотностью, существует лишь для сигналов, У которых энергия за бесконечный интервал времени конечна и, следовательно, к ним применимо преобразование Фурье.

Для незатухающих во времени сигналов энергия бесконечно велика и интеграл (1.54) расходится. Задание спектра амплитуд невозможно. Однако средняя мощность Рср, определяемая соотношением

оказывается конечной. Поэтому применяется более широкое понятие "спектральная плотность мощности". Определим ее как производную средней мощности сигнала по частоте и обозначим Сk(щ):

Индексом k подчеркивается, что здесь мы рассматриваем спектральную плотность мощности как характеристику детерминированной функции u(t), описывающей реализацию сигнала.

Эта характеристика сигнала менее содержательна, чем спектральная плотность амплитуд, так как лишена фазовой информации [см. (1.38)]. Поэтому однозначно восстановить по ней исходную реализацию сигнала невозможно. Однако отсутствие фазовой информации позволяет применить это понятие к сигналам, у которых фаза не определена.

Для установления связи между спектральной плотностью Сk(щ) и спектром амплитуд воспользуемся сигналом u(t), существующим на ограниченном интервале времени (-T<. t

где - спектральная плотность мощности сигнала, ограниченного во времени.

В дальнейшем будет показано (см. § 1.11), что, усредняя эту характеристику по множеству реализаций, можно получить спектральную плотность мощности для большого класса случайных процессов.

Функция автокорреляции детерминированного сигнала

Теперь в частотной области имеется две характеристики: спектральная характеристика и спектральная плотность мощности. Спектральной характеристике, содержащей полную информацию о сигнале u(t), соответствует преобразование Фурье в виде временной функции. Выясним, чему соответствует во временной области спектральная плотность мощности, лишенная фазовой информации.

Следует предположить, что одной и той же спектральной плотности мощности соответствует множество временных функций, различающихся фазами. Советским ученым Л.Я. Хинчиным и американским ученым Н. Винером практически одновременно было найдено обратное преобразование Фурье от спектральной плотности мощности:


Обобщенную временную функцию r(), не содержащую фазовой информации, назовем временной автокорреляционной функцией. Она показывает степень связи значений функции u(t), разделенных интервалом времени, и может быть получена из статистической теории путем развития понятия коэффициента корреляции. Отметим, что во временной функции корреляции усреднение проводится по времени в пределах одной реализации достаточно большой продолжительности.

Справедливо и второе интегральное соотношение для пары преобразования Фурье:

Пример 1.6 Определить временную функцию· автокорреляции гармонического сигнала u(t) = u0 cos(t-ц). В соответствии с (1.64)

Проведя несложные преобразования


окончательно имеем

Как и следовало ожидать, ru() не зависит от ц и, следовательно, (1.66) справедливо для целого множества гармоник, различающихся фазами.

Международная образовательная корпорация

Факультет Прикладных Наук

Реферат

на тему «Спектр плотности мощности и его связь с функцией корреляции»

По дисциплине «Теория электрической связи»

Выполнила: студент группы

ФПН-РЭиТ(з)-4С *

Джумагельдин Д

Проверила: Глухова Н.В

Алматы, 2015

І Введение

ІІ Основная часть

1. Спектральная плотность мощности

1.1 Случайные величины

1.2 Плотность вероятности функции от случайной величины

2. Случайный процесс

3. Метод определения спектральной плотности мощности по корреляционной функции

ІІІ Заключение

ІV Список использованной литературы

Введение

Теория вероятностей рассматривает случайные величины и их характеристики в "статике". Задачи описания и изучения случайных сигналов "в динамике", как отображения случайных явлений, развивающихся во времени или по любой другой переменной, решает теория случайных процессов.

В качестве универсальной координаты для распределения случайных величин по независимой переменной будем использовать, как правило, переменную "t" и трактовать ее, чисто для удобства, как временную координату. Распределения случайных величин во времени, а равно и сигналов их отображающих в любой математической форме, обычно называют случайными процессами. В технической литературе термины "случайный сигнал" и "случайный процесс" используются как синонимы.

В процессе обработки и анализа физико-технических данных обычно приходится иметь дело с тремя типами сигналов, описываемых методами статистики. Во-первых, это информационные сигналы, отображающие физические процессы, вероятностные по своей природе, как, например, акты регистрации частиц ионизирующих излучения при распаде радионуклидов. Во вторых, информационные сигналы, зависимые от определенных параметров физических процессов или объектов, значения которых заранее неизвестны, и которые обычно подлежать определению по данным информационным сигналам. И в третьих, это шумы и помехи, хаотически изменяющиеся во времени, которые сопутствуют информационным сигналам, но, как правило, статистически независимы от них как по своим значениям, так и по изменениям во времени.



Спектральная плотность мощности

Спектральная плотность мощности позволяет судить о частотных свойствах случайного процесса. Она характеризует его интенсивность при различных частотах или, иначе, среднюю мощность, приходящуюся на единицу полосы частот.

Картину распределения средней мощности по частотам называют спектром мощности. Прибор, при помощи которого измеряется спектр мощности, называется анализатором спектра. Найденный в результате измерений спектр называется аппаратным спектром.

Работа анализатора спектра основана на следующих методах измерений:

· методе фильтрации;

· методе преобразования по теореме Винера-Хинчена;

· методе Фурье-преобразования;

· методе с использованием знаковых функций;

· методе аппаратного применения ортогональных функций.

Особенность измерения спектра мощности состоит в значительной продолжительности эксперимента. Нередко она превышает длительность существования реализации, или время, в течение которого сохраняется стационарность исследуемого процесса. Оценки спектра мощности, получаемые по одной реализации стационарного эргодического процесса, не всегда приемлемы. Часто приходится выполнять многочисленные измерения, так как необходимо усреднение реализаций как по времени, так и по ансамблю. Во многих случаях реализации исследуемых случайных процессов предварительно запоминают, что позволяет многократно повторять эксперимент с изменением продолжительности анализа, использованием различных алгоритмов обработки и аппаратуры.

В случае предварительной записи реализаций случайного процесса аппаратурные погрешности могут быть уменьшены до значений, обусловленных конечной длительностью реализации и нестационарностью.

Запоминание анализируемых реализаций позволяет ускорить аппаратурный анализ и автоматизировать его.

Случайные величины

Случайная величина описывается вероятностными законами. Вероятность того, что непрерывная величина х при измерении попадет в какой-либо интервал х 1 <х <х 2 , определяется выражением:

, где p(x) - плотность вероятности, причем . Для дискретной случайной величины х i P(x = x i)=P i , где P i - вероятность, соответствующая i-у уровню величины х.

Под энергией сигнала иЦ) понимают величину

Если сигнал имеет конечную длительность Т, т.е. не равен нулю на отрезке времени [-Т/ 2, Т/ 2], то его энергия

Запишем выражение для энергии сигнала, используя формулу (2.15):

где

Полученное равенство называется равенством Парсеваля. Оно определяет энергию сигнала через временную функцию или спектральную плотность энергии, которая равна |5(/0))| 2 . Спектральная плотность энергии называется также энергетическим спектром.

Рассмотрим сигнал, существующий на ограниченном интервале времени. К такому сигналу применимо равенство Парсеваля. Следовательно,

Разделим левую и правую части равенства на интервал времени, равный Г, и устремим этот интервал к бесконечности:

С увеличением Т энергия незатухающих сигналов возрастает,

однако отношение может стремиться к определенному пределу. Этот предел называется спектральной плотностью мощности С(со). Размерность спектральной плотности мощности: [В 2 Дц].

Автокорреляционная функция

Автокорреляционная функция сигнала и (?) определяется следующим интегральным выражением:

где т - аргумент, определяющий функцию Я(х) и имеющий размерность времени; и(? + т) - исходный сигнал, сдвинутый во времени на величину -т.

Автокорреляционная функция имеет следующие свойства.

1. Значение автокорреляционной функции при сдвиге т = О равно энергии сигнала Е:

2. Автокорреляционная функция при сдвигах т Ф 0 меньше энергии сигнала:

3. Автокорреляционная функция является четной функцией, т.е.

В справедливости свойств 2 и 3 убедимся на примере.

Пример 2.6. Вычислить автокорреляционные функции сигналов: видеосигнала, представленного на рис. 2.7, я, и радиосигнала с теми же амплитудой и длительностью. Несущая частота радиосигнала равна щ, а начальная фаза равна 0.

Решение. Первую задачу решим графическим способом. Автокорреляционная функция определяется интегралом от произведения функции и (?) и ее смещенной во времени копии. Смещение видеосигнала найдем из уравнения? + т = 0. График функции м(? + т) приведен на рис. 2.7, б. Площадь, определяемая графиком произведения м(?)м(? + т) (рис. 2.7, в), равна

Функция Д(т) определяется уравнением прямой (рис. 2.7, г). Функция имеет максимум, если значение аргумента т = 0, и равна 0, если т = т и. Для других значений аргумента /?(т)

Чтобы убедиться в справедливости свойства 3, аналогично вычислим функцию для отрицательных значений т:

Рис. 2.7.

видеоимпульса:

а - прямоугольный видеоимпульс; б - задержанный во времени прямоугольный импульс; в - произведение импульсов; г - автокорреляционная функция

Окончательное выражение для автокорреляционной функции

Функция приведена на рис. 2.7, г и имеет треугольный вид.

Вычислим автокорреляционную функцию радиосигнала, расположив его симметрично относительно вертикальной оси. Радиосигнал:

Подставляя значения сигнала и его сдвинутой копии в формулу для автокорреляционной функции /?(т), получим

Выражение для автокорреляционной функции радиоимпульса состоит из двух слагаемых. Первое из них определяется произведением треугольной функции и гармонического сигнала. На выходе согласованного фильтра это слагаемое реализуется в виде ромбовидного радиоимпульса. Второе слагаемое определяется произведением треугольной функции и функций (втд^/лг, расположенных в точках т = +т и. Значения функций (втх)/:*:, которые оказывают заметное влияние на второе слагаемое автокорреляционной функции, весьма быстро убывают при изменении аргумента т от -т и до оо и от т и до -°о. Решив уравнение

можно найти интервалы задержки, в пределах которых значения функций (втлс)/;*; еще влияют на поведение функции /?(т). Для положительных значений задержки

где 7о - период гармонического сигнала.

Аналогично находится интервал для отрицательных значений задержки.

Поскольку влияние второго слагаемого автокорреляционной функции ограничивается весьма малыми (по сравнению с длительностью радиоимпульсов т и) интервалами 7о/2, в пределах которых значения треугольной функции весьма малы, то вторым слагаемым автокорреляционной функции радиоимпульса можно пренебречь.

Выявим связь автокорреляционной функции #(т) со спектральной плотностью энергии сигнала |5(/со)| 2 . Для этого выразим сдвинутый во времени сигнал и(1ь + т) через его спектральную плотность 5(/со):

Подставим данное выражение в выражение (2.21). В результате получим

Нетрудно убедиться также в справедливости равенства

Разделим обе части равенства (2.23) на интервал времени Т и устремим величину Т к бесконечности:

С учетом формулы (2.20) перепишем полученное выражение:

где
- предел отношения автокорреляционной функции ограниченного во времени сигнала к значению этого времени и при стремлении его к бесконечности. Если этот предел существует, то он определяется обратным преобразованием Фурье от спектральной плотности мощности сигнала.

Обобщением понятия «автокорреляционная функция» является взаимно корреляционная функция, которая представляет собой скалярное произведение двух сигналов:

Рассмотрим основные свойства взаимно корреляционной функции.

1. Перестановка сомножителей под знаком интеграла изменяет знак аргумента взаимно корреляционной функции:

В приведенных преобразованиях использована замена t + т = х.

  • 2. Взаимно корреляционная функция, в отличие от автокорреляционной функции, не является четной относительно аргумента т.
  • 3. Взаимно корреляционная функция определяется обратным преобразованием Фурье от произведения спектральных плотностей сигналов u(t), v(t) :

Эта формула может быть выведена аналогично формуле (2.22).

Взаимно корреляционная функция между периодически повторяющимся сигналом и непериодическим

сигналом v(t ) = Uq(?)

где R(t) - автокорреляционная функция непериодического сигнала u 0 (t).

Полученное выражение равно сумме двух интегралов. При сдвиге, равном нулю, первый интеграл равен нулю, а второй равен энергии сигнала. При сдвиге, равном периоду сигнала, первый интеграл равен энергии сигнала, а второй равен нулю. Каждое значение функции при других сдвигах равно сумме значений автокорреляционных функций непериодического сигнала, смещенных относительно друг друга на один период. Кроме того, взаимно корреляционная функция является периодической функцией, удовлетворяющей уравнению

Взаимно корреляционная функция Я ил> (т) между сигналом u(t ) и сигналом

равна - длительность сигнала v(t).

Действительно, вследствие того что период сигнала u(t ) равен Т и

взаимно корреляционная функция где

Вычисляя предел функции (2п + 1)7? м Мо (т) при п -> определим выражение для автокорреляционной функции периодического сигнала:

Размерность функции: [В 2 /Гц].

Значения функции при нулевом сдвиге и других сдвигах, для которых Лц Мо (т) Ф 0, равны бесконечности. По этой причине использование последнего выражения в качестве характеристики периодического сигнала теряет смысл.

Разделим последнее выражение на интервал, равный (2п + 1 )Т. В результате получим функцию


так как вследствие периодичности функции - т + Т) = - т).

Полученная формула определяет функцию В(т) как предел отношения автокорреляционной функции сигнала, существующего в интервале времени (2п + 1 )Т, к этому интервалу и стремлении его к бесконечности. Этот предел для периодически повторяющегося сигнала называется автокорреляционной функцией периодического сигнала. Размерность этой функции: [В 2 ].

Прямое преобразование Фурье одного периода автокорреляционной функции периодического сигнала определяет спектральную плотность мощности, которая является непрерывной функцией частоты. По этой плотности, используя формулу (2.17), можно найти спектральную плотность мощности периодической автокорреляционной функции сигнала , которая определяется для дискретных значений частот:

где 0)1 = 2п/Т.

Если автокорреляционная функция записана в виде ряда Фурье в тригонометрической форме, то выражение для ее спектральной плотности

Пример 2.7. Вычислить периодическую автокорреляционную функцию сигнала и(ф) = А бш СИ. По найденной функции, ограниченной одним периодом, определить спектральную плотность мощности.

Решение. Подставляя в выражение (2.26) заданный сигнал, получим выражение для периодической автокорреляционной функции:

Полученное выражение подставим в формулу (2.24) и найдем спектральную плотность мощности:

Пример 2.8. Для периодической нормированной автокорреляционной функции шумоподобного сигнала (М-последовательности с периодом N = 1023) вычислить спектральную плотность мощности. (Периодическая функция для последовательности меньшей длины (IV= 15) приведена на рис. 3.39.)

Решение. Для сравнительно большого периода ЛГ = 1023 значения автокорреляционной функции в интервале Т - То > т > То, где То - длительность импульса шумоподобной последовательности, примем равными нулю. В этом случае автокорреляционная функция определяется периодически повторяющейся с периодом Т последовательностью треугольных импульсов. Основание каждого треугольника равно 2то, а его высота равна 1. Уравнение, определяющее автокорреляционную функцию в пределах одного периода, равно В(т) = 1 - |т|/хо- Учитывая четность этой функции, определим коэффициенты ряда Фурье:

При вычислении интеграла использована формула

Подставляя вычисленные коэффициенты в формулу (2.27), ползшим

Спектральная плотность мощности периодической автокорреляционной функции равна взвешенной сумме бесконечно большого числа дельтафункций. Весовые множители определяются квадратом функции (этх)/:»:, умноженной на постоянный коэффициент 2я(то/Т).

Корреляционные функции цифровых сигналов связаны с корреляционными функциями последовательностей символов. Для кодовой последовательности (см. § 1.3) конечного числа N

двоичных символов автокорреляционная функция записывается в виде

где - двоичные символы, равные 0 или 1, или символы, равные -1, 1; д = О, 1, 2, ..., N - .

Последовательности символов могут быть как детерминированными, так и случайными. При передаче информации характерным свойством последовательности символов является их случайность. Значения автокорреляционной функции (при сдвигах, нс равных нулю), вычисленные по заранее записанной случайной последовательности конечной длины, также являются случайными.

Автокорреляционные функции детерминированных последовательностей, которые используются для синхронизации, а также в качестве носителей дискретных сообщений, являются детерминированными функциями.

Сигналы, построенные с использованием кодов или их кодовых последовательностей, называются кодированными сигналами.

Большинство свойств автокорреляционной функции кодовой последовательности совпадает с рассмотренными выше свойствами автокорреляционной функции сигнала.

При пулевом сдвиге автокорреляционная функция кодовой последовательности достигает максимума, который равен

Если символы равны -1, 1, то г(0) = N.

Значения автокорреляционной функции при других сдвигах меньше г(0).

Автокорреляционная функция кодовой последовательности является четной функцией.

Обобщением автокорреляционной функции является взаимно корреляционная функция. Для кодовых последовательностей одинаковой длины эта функция

где 2 } 0 6/, - символы соответственно первой и второй последовательности.

Многие свойства функции г 12 (д) совпадают со свойствами взаимно корреляционной функции рассмотренных выше сигналов. Если функция г^(д), I Ф для любой пары кода при сдвиге д = О равна нулю, то такие коды называются ортогональными. Краткое описание некоторых используемых в системах связи кодов приведено в приложениях 2-4.

Взаимно корреляционная функция между кодовой последовательностью и периодически повторяющейся той же последовательностью называется периодической автокорреляционной функцией кодовой последовательности. Выражение для функции следует из выражений (2.25), (2.26):

где г(д) - непериодическая автокорреляционная функция кодовой последовательности; д - значение сдвига между последовательностями.

Подставим в полученную формулу выражения автокорреляционных функций:

где а/г, а^+ц - элементы кодовой последовательности.

Периодическая автокорреляционная функция кодовой последовательности равна взаимно корреляционной функции, вычисленной для кодовой последовательности и циклически сдвинутых символов этой последовательности. Циклически сдвинутые кодовые последовательности, полученные по исходной последовательности а 0 = а 0 ,а { ,а 2 , ..., а м _ ь приведены ниже. Кодовая последовательность а { получена в результате сдвига исходной последовательности а 0 па один символ вправо и переноса последнего символа а дм в начало сдвинутой последовательности. Остальные последовательности получены аналогично:

Пример 2.9. Вычислить автокорреляционную и периодическую автокорреляционную функцию кодированного сигнала (рис. 2.8, а)

где и 0 (О - прямоугольный импульс с амплитудой А и длительностью т и.

Этот сигнал построен из прямоугольных импульсов, знак которых определяется весовыми коэффициентами: а 0 = ,а. = 1, а 2 = -1, а их число N = 3. Длительность сигнала равна Зт и.

Решение. Подставляя выражение для сигнала в формулу (2.21), получим

Произведем замену переменной t - кт н на х:

Обозначим: & - т = - и заменим дискретные переменные &, т на переменные к, ц. В результате получим

График автокорреляционной функции для заданного сигнала показан на рис. 2.8, б. Эта функция зависит от автокорреляционной функции /? 0 (т) прямоугольного импульса и значений автокорреляционной функции г(

Рис. 2.8. Автокорреляционная функция кодированного сигнала: а - кодированный сигнал; 6 - автокорреляционная функция сигнала; в - автокорреляционная функция периодического сигнала

Вычислим периодическую автокорреляционную функцию, используя рассчитанную выше автокорреляционную функцию, полученные значения автокорреляционной функции кодовой последовательности и формулу (2.28).

Периодическая автокорреляционная функция

Подставим заданное значение N = 3 в полученную формулу:

С учетом значений автокорреляционной функции кодовой последовательности К+З) = 0, г(+ 2) = -1, г(+1) = О, КО) = 3 запишем окончательное выражение для одного периода периодической автокорреляционной функции сигнала:

График функции приведен на рис. 2.8, в.

Взаимная спектральная плотность мощности(взаимный спектр мощности) двух реализаций и стационарных эргодических случайных процессов и определяется как прямое преобразование Фурье над их взаимной ковариационной функцией

или, с учетом соотношения между круговой и циклической частотами ,

Обратное преобразование Фурье связывает взаимные ковариационную функцию и спектральную плотность мощности:

Аналогично (1.32), (1.33) вводится спектральная плотность мощности(спектр мощности) случайного процесса

Функция обладает свойством четности:

Для взаимной спектральной плотности справедливо следующее соотношение:

где – функция, комплексно сопряженная к .

Введенные выше формулы для спектральных плотностей определены как для положительных, так и для отрицательных частот и носят название двухсторонних спектральных плотностей . Они удобны при аналитическом изучении систем и сигналов. На практике же пользуются спектральными плотностями, определенными только для неотрицательных частот и называемыми односторонними (рисунок 1.14):

Рисунок 1.14 – Односторонняя и двусторонняя

спектральные плотности

Выведем выражение, связывающее одностороннюю спектральную плотность стационарного СП с его ковариационной функцией:

Учтем свойство четности для ковариационной функции стационарного СП и функции косинус, свойство нечетности для функции синус, а также симметричность пределов интегрирования. В результате второй интеграл в полученном выше выражении обращается в нуль, а в первом интеграле можно сократить вдвое пределы интегрирования, удвоив при этом коэффициент:

Очевидно, что спектральная плотность мощности случайного процесса является действительной функцией.

Аналогично можно получить обратное соотношение:

Из выражения (1.42) при следует, что

Это означает, что общая площадь под графиком односторонней спектральной плотности равна среднему квадрату случайного процесса. Другими словами, односторонняя спектральная плотность интерпретируется как распределение среднего квадрата процесса по частотам.

Площадь под графиком односторонней плотности, заключенная между двумя произвольными значениями частоты и , равна среднему квадрату процесса в этой полосе частот спектра (рисунок 1.15):

Рисунок 1.15 – Свойство спектральной плотности

Взаимная спектральная плотность мощности является комплексной величиной, поэтому ее можно представить в показательной форме записи через модуль и фазовый угол :


где – модуль;

– фазовый угол;

, – действительная и мнимая части функции соответственно.

Модуль взаимной спектральной плотности входит в важное неравенство

Это неравенство позволяет определить функцию когерентности (квадрат когерентности), которая аналогична квадрату нормированной корреляционной функции:

Второй способ введения спектральных плотностей состоит в непосредственном преобразовании Фурье случайных процессов.

Пусть и – два стационарных эргодических случайных процесса, для которых финитные преобразования Фурье -х реализаций длины определяют в виде

Двусторонняя взаимная спектральная плотность этих случайных процессов вводится с использованием произведения через соотношение

где оператор математического ожидания означает операцию усреднения по индексу .

Расчет двусторонней спектральной плотности случайного процесса осуществляют по соотношению

Аналогично вводятся и односторонние спектральные плотности:

Функции , определенные формулами (1.49), (1.50), идентичны соответствующим функциям, определенным соотношениями (1.32), (1.33) как преобразования Фурье над ковариационными функциями. Это утверждение носит называние теоремы Винера-Хинчина.

Контрольные вопросы

1. Приведите классификацию детерминированных процессов.

2. В чем отличие между полигармоническими и почти периодическими процессами?

3. Сформулируйте определение стационарного случайного процесса.

4. Какой способ усреднения характеристик эргодического случайного процесса предпочтителен – усреднение по ансамблю выборочных функций или усреднение по времени наблюдения одной реализации?

5. Сформулируйте определение плотности распределения вероятности случайного процесса.

6. Запишите выражение, связывающее корреляционную и ковариационную функции стационарного случайного процесса.

7. В каком случае два случайных процесса считаются некоррелированными?

8. Укажите способы расчета среднего квадрата стационарного случайного процесса.

9. Каким преобразованием связаны спектральная плотность и ковариационная функции случайного процесса?

10. В каких пределах изменяются значения функции когерентности двух случайных процессов?

Литература

1. Сергиенко, А.Б. Цифровая обработка сигналов / А.Б. Сергиенко. – М: Питер, 2002.– 604 с.

2. Садовский, Г.А. Теоретические основы информационно-измерительной техники / Г.А. Садовский. – М.: Высшая школа, 2008. – 480 с.

3. Бендат, Д. Применение корреляционного и спектрального анализа / Д. Бендат, А. Пирсол. – М.: Мир, 1983. – 312 с.

4. Бендат, Д. Измерение и анализ случайных процессов / Д. Бендат, А. Пирсол. – М.: Мир, 1974. – 464 с.